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Abstract. As smartwatches become increasingly integrated into daily 
life, their electromagnetic (EM) emissions introduce a significant yet 
overlooked privacy risk. This study systematically examines how EM 
leakage from smartwatches can be exploited to infer user interactions and 
behavioral patterns. We propose MagWatch,  a  novel  non-intrusive  attack  
that applies wavelet transform for signal processing and leverages a CNN-
LSTM model to identify applications and in-app activities, achieving up 
to 90% accuracy across multiple smartwatch models. Our findings reveal 
a critical security vulnerability, demonstrating that attackers can pas-
sively monitor EM emissions to reconstruct user interactions, exposing
sensitive information such as communication habits and app usage pat-
terns. This research highlights the urgent need for privacy-preserving
countermeasures in wearable technology and establishes a foundation for
future studies on EM side-channel security risks.

Keywords: Side Channel Attack · Privacy Leakage · Electromagnetic 
Signal · Smartwatch

1 Introduction 

The widespread adoption of smartwatches has made them an integral part of 
users’ daily lives. According to market research, the global smart watch market
is projected to reach 253 million units by 2025 [21]. Users increasingly rely on 
smartwatches not only for payments, communication, navigation, and remote 
control but also for continuous health m onitoring, including heart rate tracking,
blood oxygen measurement, and sleep analysis [5, 10, 11, 20]. As these devices 
become more autonomous, many users interact with t hem independently of their
smartphones [3], making them attractive targets for security threats.

Although extensive research has been conducted on the security of mobile 
devices and the Internet of Things (IoT), the security of s martwatches remains
relatively underexplored. Previous studies have identified various vulnerabilities
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in wearable devices, such as motion sensor-based attacks [25], weaknesses in 
authentication mechanisms, and security risks associated with third-party appli-
cations [12]. However, most existing research has focused mainly on software-
based vulnerabilities, largely ove rlooking side-channel threats in smartwatches.

In this study, we identify and analyze for the first time a significant electro-
magnetic (EM) leakage issue in smartwatches, particularly when operating on 
cellular networks. Unlike Bluetooth-only smartwatches, cellular-enabled smart-
watches generate stronger EM emissions due to their higher power consumption 
and continuous network communication. These emissions originate from vari-
ous hardware components, including wireless communication modules (4G/5G), 
processors, and sensors, all of which contribute to a unique EM side-channel 
footprint. When users interact with their smartwatches—such as receiving noti-
fications, making calls, or synchronizing data—the wireless transmission and 
computational workload induce distinguishable EM patterns. Similarly, differ-
ent in-app a ctivities trigger specific processing states, leading to identifiable EM
leakage signatures that an attacker can exploit. We have designed and imple-
mented MagWatch to demonstrate the feasibility of leveraging our reported
electromagnetic side-channel leakage to launch a contactless, fine-grained, and
scalable attack on smartwatches for the first time.

Fig. 1. Smartwatch Privacy Leaks and Their Consequences

EM side-channel attacks pose a particularly severe security risk as they lever-
age unintended physical emissions rather than software vulnerabilities [7, 16, 17], 
allowing adversaries to infer user activities without requiring malware instal-
lation or direct access to the device. Unlike cryptographic attacks that target 
encryption algorithms, EM-based techniques passively extract sensitive informa-
tion from seemingly benign system operations, making them difficult to detect
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and mitigate. Moreover, these attacks can be conducted remotely, enabling an 
adversary to monitor smartwatch EM emissions from a distance without p hysical
access, significantly increasing their feasibility as a scalable attack vector.

As shown in Fig. 1, beyond merely recognizing the applications in use (e.g., 
social media, music, or productivity apps), EM side-channel attacks can also 
identify fine-grained in-app activities, exposing detailed user behavior patterns. 
This means that even without direct access to the smartwatch, an adversary 
could infer whether a user is engaging in communication, media consumption, 
or work-related tasks, raising serious privacy concerns. More critically, the com-
bination of app identification and in-app activity recognition enables adversaries
to construct long-term behavioral profiles, revealing user preferences, app usage
habits, daily routines, social interaction frequency, and even work intensity [22]. 
In certain cases, this could extend to exposing personal life p atterns or pro-
fessional confidentiality [19], demonstrating that EM side-channel attacks have 
far-reaching implications beyond simple app recognition.

We propose and demonstrate MagWatch, a contactless EM side-channel 
attack, and evaluate its effectiveness, in uncovering three key aspects of user pri-
vacy: app launching, in-app activity recognition, and behavioral inference. Our 
experimentation, conducted on multiple smartwatch models, demonstrates that 
MagWatch achieves high classification performance in different scenarios. Specifi-
cally, for application recognition, MagWatch successfully classifies 16 smartwatch 
applications, achieving an average accuracy above 90%, with only navigation and 
heart-rate monitoring apps showing moderate mis-classification due to similar 
sensor usage. Regarding in-app activity recognition, across multiple applications, 
MagWatch can differentiate specific in-app activities, with classification accu-
racy reaching over 85% in apps such as WeChat, Outlook, and Spotify. The
attack exhibits exceptional effectiveness at close range, maintaining high accu-
racy. While accuracy gradually declines beyond 7.5 cm and drops below 20% at
12.5 cm, this aligns with the inherent range characteristics of EM-based attacks,
which are optimized for short-distance precision, as consistently observed in the
literature, such as [16, 17]. 

This paper presents the following k ey contributions:

– This paper conducts systematic analysis of electromagnetic leakage in smart-
watches, evaluating its impact across various applications and user activities.

– This paper introduces MagWatch, a novel contactless side-channel attack 
model that utilizes EM leakage to infer user interactions without requiring
software exploitation.

– This paper explores countermeasures against EM-based privacy threats, 
proposing effective mitigation strategies while highlighting previously under-
estimated security risks in smartwatches.

By addressing this emerging security challenge, we aim to provide new 
insights into smartwatch privacy risks and contribute to the broader field of
wearable device security and electromagnetic side-channel analysis.
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2 Background and Related Work 
2.1 Background 

Electromagnetic (EM) signals arise from the movement of electric charges, as 
described by Maxwell’s equations. When an electric current flows through a 
conductor, it generates both electric and magnetic fields. According to Ampère’s
Law with Maxwell’s correction [15]: 

∇  ×  B = μ0J + μ0ε0 
∂ E
∂t

(1) 

where B is the magnetic field, J is the current density, μ0 is the permeability 
of free space, and ε0 is the permittivity of free space. This equation indicates 
that both electric currents and time-varying electric fields contribute to the for-
mation of magnetic fields. In electronic devices, rapid switching of transistors, 
varying clock speeds, and fluctuating power consumption introduce dynamic 
electromagnetic emissions. These emissions, often categorized as electromagnetic
interference (EMI), are a byproduct of hardware activity and can serve as a side
channel for information leakage. In smartwatches, just like in smartphones [7], 
various hardware components contribute to the generation of EM signals. CPU 
and memory operations induce fluctuating electrical currents as processes are 
executed, leading to distinct magnetic field variations. Power management cir-
cuits dynamically regulate voltage and current, producing low-frequency mag-
netic fluctuations. Display drivers and touchscreen circuits generate periodic 
electromagnetic v ariations as screens refresh or register user interactions. Since
different applications invoke different hardware modules upon launching, they
induce unique electromagnetic patterns, as illustrated in Fig. 2. 

Fig. 2. Different EM Patterns of Four Apps (as Illustration)
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2.2 Related Wo rk

Most prior research on smartwatch privacy has focused on data collection and 
user perception rather than side-channel threats. Emmanuel Sebastian Udoh [23] 
and HongSuk Yoon [27] have both conducted user research on smartwatch pri-
vacy risks. Yoon’s qualitative study focuses on users’ perspectives regarding 
information tailoring and data privacy through surveys and interviews, while 
Udoh’s exploratory study assesses American college students’ priv acy awareness
and attitudes toward smartwatch-related privacy issues. A key concern raised in
previous studies [12, 24] is the “Privacy Paradox”, the phenomenon where users 
express concerns about privacy but fail to take adequate protective measures. 
Many smartwatch users underestimate the extent of p ersonal data their devices
collect and share, including GPS location, health metrics, and communication
logs [14]. Furthermore, the integration of third-party applications exacerbates 
privacy risks, as user data can be shared beyond their control, leading to poten-
tial security breaches. These researches rely o n user surveys and behavioral stud-
ies rather than direct hardware-based security assessments.

Although privacy concerns regarding smartwatch applications have been 
studied, electromagnetic (EM) side-channel risks in smartwatches remain largely 
unexplored. Most existing EM side-channel attack research h as been conducted
on smartphones and computers, leaving wearable devices unexamined. Zhu et
al. [28] first utilized mobile phone magnetometers to analyze electromagnetic 
radiation footprint from nearby computers, enabling a pp and webpage infer-
ence. Tao et al. [16, 17] investigated electromagnetic side-channel leakage in 
smartphones during wireless charging, revealing how sensitive information can 
be inferred from EM emissions. Similarly, Yushicheng et al. [4] studied EM-
based privacy leakage from computers, exposing vulnerabilities in cryptographic 
implementations and system operations. Furthermore, Yongjian Fu et al. [7] 
demonstrated how EM emissions from smartphones can be exploited to infer user 
activities and extract sensitive data. A dditionally, prior work has demonstrated
EM-based fingerprinting of USB devices [8] and profiling of IoT device activities 
through side-channel emissions [1]. These studies highlight the risks associated 
with EM-based side channels in traditional computing devices, yet the potential 
privacy threats posed by EM emissions from smartwatches remain largely unex-
amined. Given the compact design, reliance on multiple sensors, and frequent 
connectivity with smartphones and other IoT devices, smartwatches may exhibit
distinct EM leakage characteristics, warranting further investigation.

3 Threat Model 

We consider a realistic threat scenario where a victim wears a smartwatch and 
engages in daily activities such as making payments, answering calls, and mon-
itoring heart rate (Fig. 3). These interactions generate distinct electromagnetic 
(EM) emissions, which an attacker can exploit to infer sensitive behaviors. This 
attack can occur in public or semi-public environments such as cafes, offices,
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and public transportation hubs (e.g., airport, train station, or subway compart-
ments), where users frequently interact with their smartwatches near tables and
desks.

We assume that the attacker can be in close proximity to the victim, either 
by being physically present in the same space or by strategically placing hidden 
EM sensing devices in frequently visited locations. The adversary may be an 
unauthorized third party, such as a cybercriminal, a corporate espionage agent, 
or a surveillance entity seeking to extract private information. The attacker 
can discreetly deploy malicious EM sensing devices, such as software-defined 
radios (SDRs) or concealed antennas, under tables or desks to passively cap-
ture smartwatch-generated EM signals. Due to their small size, these sensing 
devices can be disguised as common objects such as earphones, chargers, power 
banks, or wireless mice, making them difficult to detect. Once deployed, these 
devices enable continuous and covert data collection. Beyond hardware attacks, 
the attacker may also exploit a compromised smartphone app running on the 
victim’s paired device, using side channels to extract EM data in the background 
and upload it to a remote server for further analysis. More sophisticated attack-
ers may deploy multiple hidden sensors across an environment, such as different
tables in a shared workspace or a cafe, allowing them to aggregate signals from
various perspectives to enhance tracking accuracy and improve the reconstruc-
tion of user activities. By analyzing these captured EM emissions, the attacker
can infer financial transactions, call and messaging patterns, health monitor-
ing behaviors, and authentication gestures, posing significant privacy risks. This
threat model demonstrates that EM side channels can be practically leveraged
to infer smartwatch activities without requiring direct access to the device, high-
lighting the feasibility and stealthiness of such attacks.

Fig. 3. Motivating Example Scenario: A user wearing a smartwatch sequentially makes 
a payment, receives a call, and checks their heart rate. Each action activates the smart-
watch’s corresponding functions, generating distinct electromagnetic signals through-
out the process.
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Fig. 4. Overview of MagW atch

4 Approach Overview 

In this section, we provide a detailed overview of MagWatch, followed by an 
in-depth discussion of each stage in the pipeline. As illustrated in Fig. 4,  the  
proposed system begins with data collection, where magnetic signals emitted 
by the smartwatch are captured using a malicious sensing device. These signals 
undergo enhancement and processing to improve their quality before being ana-
lyzed by the MagWatch model. The recognition phase leverages machine learning 
techniques to infer in-app activities and app launching events. Ultimately, this
extracted information can be used to deduce user privacy risks and uncover
behavioral patterns.

Fig. 5. Attack Device and A ttack Scenarios

4.1 Data C ollection

Data collection involves discreetly capturing EM signals in public or semi-public 
environments. Specifically, to record electromagnetic emissions from an iWatch 
11.2 and iWatch 10 under various operating conditions, we dev eloped a covert
attack device designed for unobtrusive data collection, as shown in Fig. 5.  This  
device is equipped with a QMC5883L sensor and an Arduino Nano, which pro-
cesses the captured electromagnetic signals. Its compact and concealed design
enhances effectiveness for covert data collection.
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Algorithm 1. Electromagnetic Signal Enhancement via Wavelet Analysis 
Require: EM signal sequence X = {x1,  x2,  .  .  .  ,  xn} with axes {x, y, z}, window size w 
Ensure: Enhanced signal sequence Xenhanced 

1: Initialize empty list Xenhanced 

2: while number of samples in X ≥ w do 
3: Fetch subsequence X of length w from X 
4: for each axis a ∈  {x, y, z, magnitude} do 
5: Sa ← signal values of axis a from X 
6: Sa ← Sa − mean(Sa) Remove DC component 
7: Sa ← Sa/std(Sa) Normalize signal 
8: Ca ← WaveletDecompose(Sa, ’db4’, level =  4)  
9: for each detail coefficient level i ∈  {1, 2, 3, 4} do 

10: Ti ← 0.5 × std(Ca[i]) Adaptive threshold 
11: Ca[i] ← SoftThreshold(Ca[i],  T  i)
12: Ca[i] ← sign(Ca[i]) × |Ca[i]|0.75 Non-linear enhancement
13: end for
14: Sa ← WaveletReconstruct(Ca, ’db4’)
15: Sa ← Sa[0 : w] Trim to original length
16: end for
17: Create enhanced frame Fenhanced by combining all axes Sa

18: Append Fenhanced to Xenhanced

19: end while
20: return Xenhanced

4.2 Signal Enhancemen t

This paper proposes an electromagnetic signal enhancement algorithm based o n
wavelet transform [6], specifically designed for processing multi-axis electromag-
netic signals with subtle variations. The proposed method integrates wavelet 
decomposition with adaptive thresholding to e nhance significant signal features
while preserving overall signal integrity.

For wavelet selection, the Daubechies-4 (db4) wavelet is employed as the basis 
function due to its optimal balance between smoothness and localization, making 
it particularly suitable for electromagnetic signal analysis. The algorithm utilizes 
a multi-level wavelet decomposition strategy, where the signal is decomposed into
approximation and detail coefficients across multiple frequency bands, enabling
localized feature extraction.

To effectively suppress noise while retaining essential signal structures, adap-
tive thresholding is applied based on the statistical properties of wavelet coeffi-
cients, as shown in Algorithm 1. Specifically, the threshold value at each decom-
position level is computed dynamically as: 

Tj = 0.5 × σ(Ca[i]) (2) 

where σ(Ca[i]) represents the standard deviation of the wavelet coefficients at 
level j. After thresholding, the detail coefficients undergo a non-linear enhance-
ment transformation formulated as:
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d̂j,k = sign(dj,k) (|dj,k|  −  Tj)+ ·  |dj,k|0.75 (3) 
where (x)+ denotes the positive part of x, ensuring that only coefficients exceed-
ing the threshold contribute to the enhanced signal. The power-law transforma-
tion with an exponent of 0.75 amplifies relevant features while suppressing noise
interference.

The proposed approach effectively enhances both global and localized signal 
variations, ensuring robust performance across diverse signal conditions. By pro-
cessing each spatial axis independently and subsequently integrating them in to
a coherent enhanced signal, the method preserves both temporal and spatial
relationships within the data.

This methodology is particularly advantageous for electromagnetic signal 
processing, where traditional enhancement techniques may struggle to capture 
subtle but meaningful variations. The combination of wavelet-based decompo-
sition, adaptive thresholding, and non-linear enhancemen t makes this approach
especially suitable for applications requiring high-precision signal analysis, such
as pattern recognition in electromagnetic data.

4.3 Activity R ecognition

Convolutional Neural Networks (CNNs) [26] are extensively used across different 
domains and demonstrate strong performance in feature extraction and classi-
fication tasks. Once we obtain the enhanced EM signal sequence, we first use 
a CNN to extract key features for subsequent activity recognition. To balance 
efficiency and performance, we opt for a simple two-layer CNN in this study,
ensuring feature extraction without imposing a heavy computational load.

The first convolutional block consists of a convolution layer with 64 filters of 
size 7 and a stride of 1, followe d by a max-pooling layer with stride 2, a ReLU
activation [9], and a batch normalization layer. The second convolutional block 
has a similar structure as the previous one, except that the convolution layer is 
different. The second convolutional layer has a kernel size of 5, a stride of 1, and
128 output channels. After extracting the EM features, we then introduce two
Long Short-Term Memory (LSTM) [13] layers to model the temporal dependen-
cies. The first LSTM layer, with 128 units, processes the output features from the 
convolutional layers and transfers the information to the subsequent layer. To 
prevent overfitting and enhance generalization, a dropout layer with a rate of 0.3 
is applied after the first LSTM layer. The second LSTM layer, consisting of 64 
units, further refines the learned sequential features and outputs a fixed-length 
representation of the data, capturing the underlying temporal patterns. Last,
a fully connected layer with 64 units and a ReLU activation function is added
to process the output from the LSTM layers for the final activity prediction. A
dropout layer follows to help prevent overfitting.

To validate the effectiveness of these hyperparameter settings, we evaluate 
the impact of different LSTM unit s izes and dropout rates on model accuracy
in Sect. 5.3. The results indicate that a configuration of 128 LSTM units with a 
dropout rate of 0.3 achieves the highest validation accuracy of 93%.
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5 Evaluation 
5.1 Experiment Setup 

Our evaluation involves two sets of equipment: an attack device for data collec-
tion and a computing device for processing, training, and testing the collected 
data. We can u se the attack device we designed to discreetly collect the elec-
tromagnetic signals, as introduced in Sect. 4.1. We can also opt to use a smart-
phone’s built-in electromagnetic sensor, as demonstrated in this experimental 
setup, for data collection instead. The experiment was carried out by collecting 
electromagnetic (EM) signals from the victim’s device at a sampling rate of 10
milliseconds per data point.

The environment was intentionally non-isolated, with electromagnetic inter-
ference from other electronic devices to simulate a realistic setting. To capture 
the side-channel signals covertly, the receiver was placed underneath the victim’s 
desk, directly below the target device. This setup replicates a realistic attack sce-
nario where t he attacker collects EM emissions without direct physical access to
the victim’s device, a method commonly used in practice, as documented in the
literature.

The Sensor Logger app [2] was used to record electromagnetic signals, ensur-
ing a controlled and systematic data acquisition process. To maintain consis-
tency, the battery level of the smartwatch was kept between 60% and 80%, pre-
venting extreme power states from affecting the collected signals. Additionally, 
all background applications o n the smartwatch were forcefully closed, ensuring
that only the target application was running during the experiments, allowing
for consistent and comparable data.

5.2 Datasets 

We construct four datasets using commodity smartwatches under different con-
ditions to evaluate their effectiveness in Sect. 5.4. These datasets are collected 
from four smartwatch models (Apple Watch Ultra 2, Apple Watch 10, Xiaomi 
Watch S3, and Huawei Watch 4) to train various models and assess their per-
formance in app recognition, in-app activity classification, signal analysis across
different distances, and cross-device application.

Table 1. App Categories and Corresponding App List

Category App List (on Both Android and iOS)

Video & Music Youtube, Spotify, Apple Music
Social Wechat, Message, Outlook, QQ Email, WhatsApp
Navigation Apple Map, Google Map, Baidu Map, Weather
Health Heart Rate, Fitness
Pay BofA, Alipay
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– Dapp: We selected 16 commonly used smartwatch apps listed in Table 1 from 
categories such as health, music, communication, and navigation. For each 
app in the categories, we recorded 3 s of EM signals and repeated the collection
100 times.

– Dact: We selected 5 representative apps from the collected set and recorded 
EM signals for 5 different in-app activities. Each activity was recorded for 3 s
and repeated 100 times.

– Ddis: We collected EM signals at different distances from the smartwatch, 
spanning from 0 cm to 20 cm, with increments of 2.5 cm, to analyze the signal 
variations across a range of proximities. Each recording lasted 10 s and was
repeated 100 times per distance.

– Ddev: We collected usage data from four smartwatch devices while connected 
to a cellular network. Each device’s dataset includes three key c omponents:
app recognition, in-app activity classification, and signal analysis at different
distances.

These datasets, gathered from Apple Watch Ultra 2, Apple Watch 10, Xiaomi 
Watch S3, and Huawei Watch 4, are used to train models and evaluate their 
performance in distinguishing apps, identifying specific activities within apps, 
and assessing the impact of distance on signal variations. This comprehensive
dataset enables cross-device comparisons and enhances the robustness of our
analysis.

5.3 Hyperparameter Eva luation

In our hyperparameter optimization experiments for the CNN-LSTM architec-
ture, we conducted a grid searc h across LSTM units (50–250) and dropout rates
(0.1–0.5). Figure 6 illustrates two cross-sectional analyses of the hyperparameter 
tuning results: the left graph examines the effect of varying LSTM units with the 
dropout rate fixed at 0.3, while the right graph e xplores different dropout rates
with the LSTM unit count fixed at 128, evaluating validation accuracy across
different settings.

Fig. 6. Effect of Different Units and Dropout Rates
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Our results indicated that 128 LSTM units yielded the highest validation 
accuracy, as additional units increased complexity without further improving 
performance, leading to a decline in validation accuracy. Similarly, a dropout 
rate of 0.3 achieved the best trade-off between regularization and performance, 
resulting in 93% validation accuracy. Higher dropout rates (0.4–0.5) led to exces-
sive information loss, whereas lower dropout rates (0.1–0.2) provided insufficient
regularization, reducing the model’s generalization ability.

5.4 Effectiveness 

Fig. 7. The Classification Performance of MagWatch on iWatch

Effectiveness of App Launching Recognition. The confusion matrix in
Fig. 7 presents the effectiveness of our method in recognizing 16 different appli-
cations on iWatch Ultra 2 (used here for illustration) based on EM signals. To 
evaluate the classification performance, w e utilize 80% of each application from
the Dapp for training and assess the model using the remaining 20% data.

Overall, the recognition model achieves an average accuracy exceeding 90% 
across most applications, demonstrating its robustness in distinguishing differ-
ent app usage scenarios. However, specific application groups, such as A3, A4, 
and A5 (navigation and mapping apps) and A6 and A10 (heart rate and fitness 
apps), exhibit lower classification accuracy. This is likely due to their reliance 
on the same underlying sensors (GPS for navigation apps and heart rate sensors
for fitness-related apps), resulting in similar EM signal patterns that increase
misclassification rates. Despite this challenge, our model is still capable of effec-
tively distinguishing applications based on the type of sensors they utilize. This
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indicates that even when fine-grained app differentiation is difficult, EM signal 
analysis remains effective in identifying the broader sensor usage patterns,  such  
as whether an app primarily interacts with GPS, heart rate sensors, or other
components.

Fig. 8. Accuracy of In-App Activity Recognition Across Different Applications

Effectiveness of In-App Activity Recognition. To further validate the 
effectiveness of MagWatch, we conduct additional experiments by using Dact of 
three widely used applications—Spotify, WeChat, and Outlook—each involving 
three distinct activities. We then implement a CNN-based classification model
to assess the feasibility of distinguishing fine-grained in-app activities based on
their EM signatures.

Specifically, as shown in Fig. 8(a)-Fig. 8(c), in Spotify, we evaluate the recog-
nition of skipping a song, pausing playback, and switching devices. In WeChat, 
we analyze the ability to classify receiving a message, sending a message, and lis-
tening to a voice message. Similarly, for Outlook, we investigate the recognition
of receiving an email, sending an email, and editing an email.

The results show MagWatch’s classification accuracy of 83.0%, 78.0%, and 
86.0% for WeChat, 82.0%, 84.0%, and 86.0% for Outlook, and 90.0%, 93.0%, and 
96.0% for Spotify, in recognizing the in-app activities elaborated above. These 
results validate the effectiveness of MagWatch, which not only identifies the
launched application but also accurately recognizes fine-grained in-app activities.

Impact of Position and Distance. Figure 9 illustrates the impact of dis-
tance on the classification accuracy of app launching recognition. In practice, an 
attacker could place a disguised device near the target smartwatch at various 
distances to capture EM emissions. To evaluate this, w e conducted experiments
by positioning the attacking device at distances ranging from 0 cm to 20 cm at
increment of 2.5 cm.

The results indicate that while the model maintains high accuracy at close 
range, the performance gradually declines as the distance increases. Beyond 
7.5 cm, the accuracy drops significantly, and at 12.5 cm, it falls below 20%, mak-
ing app recognition nearly ineffective. This decline, as consistently observed in
the literature such as [16, 17], suggests that as the distance increases, the EM



342 H. Xu et al.

Fig. 9. Impact of Distance

signal disturbances become too weak to be reliably captured, limiting the effec-
tiveness of remote attacks. This outcome highlights the practical constraints of 
EM-based side-channel attacks, where attackers must be in close proximity to 
achieve h igh classification accuracy. The results suggest that physical distance
and shielding could serve as natural countermeasures to mitigate such privacy
risks.

Fig. 10. Impact of Battery Lev el

Impact of Battery Level. To evaluate the impact of smartwatch battery 
levels on the performance of MagWatch, we conducted experiments under four 
different battery conditions: 60%, 40%, 20%, and 10%. The dataset for these 
experiments was collected from the Apple Watch Ultra 2 (used here for exam-
ple), including both app usage data (denoted as “App” data in Fig. 10) and in-app 
activity data (denoted as “Act” data). The c lassification accuracy, as shown in
Fig. 10, represents the mean accuracy across multiple trials and remains largely 
unaffected by battery fluctuations. One key factor contributing to this stabil-
ity is the power-efficient architecture of modern smartwatches, which ensures
consistent computational performance regardless of battery level. These findings
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underscore MagWatch’s strong generalization capability across different battery 
conditions, reinforcing its robustness and reliability for electromagnetic-based 
inference. This ensures that MagWatch can be robustly o perated under vary-
ing real-world scenarios without concerns about performance degradation due
to battery fluctuations.

5.5 Analysis of Cold/Hot Start

Table 2. Classification Results of EM Signals G enerated During COLD/HOT-Start

kNN SVM CNN CNN-LSTM 
Cold 67% 75% 83% 93% 
Hot 6% 9% 13% 16% 

As stated in [18], cold start and hot start exhibit distinct characteristics during 
the application launch process. Cold start refers to launching an application from 
scratch, requiring CPU initialization, memory allocation, and data loading. This 
process generates more prominent EM signal characteristics, making it easier to 
identify. In contrast, a hot start occurs when an application is partially loaded 
in the background, allowing the system to restore data from cache with reduced
CPU activity. This results in weaker EM signal characteristics, which makes
identification more challenging.

This phenomenon is not limited to smartphones; it also applies to smart-
watches and other wearable devices, as demonstrated in Table 2. The table 
presents the results of applying various classification models (kNN, SVM, CNN, 
CNN-LSTM) to smartwatch EM emission data collected from cold start versus 
hot start scenarios. It clearly shows that classification accuracy is high in cold 
start scenarios, particularly with CNN-LSTM, while accuracy is significantly 
lo wer in hot start scenarios across all models. Given that smartwatches typi-
cally use more aggressive power management strategies, the result in Table 2 is 
expected, as the differences in resource scheduling between cold and hot starts 
are e ven more pronounced in smartwatch devices.

6 Discussion 

In this section, we discuss the limitations of MagWatch, the potential d efense
countermeasure, and the future work.

Limitations. We have implemented MagWatch to demonstrate the feasibility of 
electromagnetic (EM) side-channel inference for smartwatch applications. While 
the results are promising, several limitations remain in the current work.
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First, MagWatch is evaluated in controlled experimental settings where the 
smartwatch remains stationary during app interactions. However, we have not 
fully explored its performance in dynamic scenarios, such as users wearing the 
smartwatch while walking or performing other activities. Theoretically, Mag-
Watch could still capture meaningful EM traces in these cases b y refining sig-
nal preprocessing techniques and adapting feature extraction methods. However,
movement introduces additional noise and variability, making real-time inference
more challenging.

Second, our experiments are conducted under relatively close-range and con-
trolled environmental conditions to validate the feasibility of EM-based inference. 
The accuracy of MagWatch may degrade as the distance between the sensor and 
the smartwatch increases due to EM signal attenuation. To extend its applica-
bility, further studies are required to refine the model to accommodate varying
distances and external interference.

Countermeasures. Several countermeasures can help mitigate EM information 
leakage from smartwatches. One approach is physical shielding with ferromag-
netic materials to reduce magnetometer interference, though this is often over-
look ed due to design constraints prioritizing size and weight. Increasing physical
distance(in Sect. 5.4) can naturally reduce privacy risks. Detecting and excluding 
nearby devices that may capture EM signals could further enhance protection. 
Lastly, current EM emission regulations may be too lax; e nforcing stricter stan-
dards could prevent adversaries from inferring user behavior through app usage
patterns.

Future Work. For future work, we plan to explore real-world deployment sce-
narios, considering factors such as user motion, device orientation, and environ-
mental EM noise. Additionally, we aim to improve the generalization of Mag-
Watch b y integrating adaptive learning techniques to enhance robustness across
different smartwatch models and operating conditions.

7 Conclusion 

This paper explores and demonstrates the feasibility of EM-based side-channel 
attacks towards smartwatches, where EM emissions generated during smart-
watch operations can be captured to reveal both app usage and in-app activities 
without requiring direct device access. We have designed and implemented Mag-
Watch, a novel non-intrusive attack that utilizes wavelet transform for signal 
processing and a CNN-LSTM model to identify applications and in-app activi-
ties, achieving up to 90% accuracy across multiple smartwatch models. To the 
best of our knowledge, this is the first attack targeting smartwatch EM emissions
to infer user privacy and behavior patterns related to app interaction/navigation.
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